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Abstract
In a recent paper (Buyarov V S, López-Artés P, Martı́nez-Finkelshtein A and
Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549–60), an efficient method
was provided for evaluating in closed form the information entropy of the
Gegenbauer polynomials C(λ)

n (x) in the case when λ = l ∈ N. For given
values of n and l, this method requires the computation by means of recurrence
relations of two auxiliary polynomials, P(x) and H(x), of degrees 2l − 2
and 2l − 4, respectively. Here it is shown that P(x) is related to the
coefficients of the Gaussian quadrature formula for the Gegenbauer weights
wl(x) = (1 − x2)l−1/2, and this fact is used to obtain the explicit expression
of P(x). From this result, an explicit formula is also given for the polynomial
S(x) = limn→∞ P

(
1 − x/(2n2)

)
, which is relevant to the study of the

asymptotic (n → ∞ with l fixed) behaviour of the entropy.

PACS numbers: 03.67.−a, 02.30.Gp
Mathematics Subject Classification: 33C45, 41A55, 81Q99, 94A17

1. Introduction

According to Shannon’s information theory [1], the uncertainty associated with a continuous
probability distribution with density function ρ(�x), �x ∈ R

D , is measured by the entropy

S(ρ) = −
∫

ρ(�x) log ρ(�x) d�x.

In particular, when ρ(�x) is the single-particle probability density for the position of a quantum
system, S(ρ) measures the uncertainty in the localization of the particle in position space. The
momentum entropy S(γ ) can be defined likewise from the single-particle density of momentum
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γ (�p). In the simplest case of a single-particle system described by the wavefunction
ψ(�x), ρ(�x) = |ψ(�x)|2 and γ (�p) = |φ(�p)|2, where the wavefunction in momentum space
φ(�p) is essentially the Fourier transform of ψ(�x). The sharp inequality

S(ρ) + S(γ ) � D(1 + log π)

provides a quantitative formulation of the position–momentum uncertainty principle which is
stronger than the standard Heisenberg inequality [2].

For many important quantum systems, such as the D-dimensional harmonic oscillator and
the hydrogen atom, the calculation of position and momentum information entropies involves
the evaluation of integrals of the form

E(pn) = −
∫ b

a

[pn(x)]2 log[pn(x)]2w(x) dx (1)

where {pn(x)} denotes a polynomial sequence (degpn(x) = n) orthogonal on [a, b] ⊆ R with
respect to the weight function w(x). During the last decade there has been an intense activity
in the study of these integrals, motivated not only by their relevance to quantum physics but
also by their close relationship to other interesting mathematical objects, such as the Lp-norms
or the logarithmic potentials of the polynomials pn(x). An updated survey of knowledge in
this field can be found in [3].

The information entropies of the Gegenbauer or ultraspherical polynomials,

E
(
C(λ)

n

) = −
∫ 1

−1

[
C(λ)

n (x)
]2

log
[
C(λ)

n (x)
]2

(1 − x2)λ−1/2 dx (2)

with λ non-negative integer or half-integer, are especially relevant since they appear in the
calculation of information entropies in both position and momentum spaces for any quantum-
mechanical system with a central potential V (r) in D-dimensional space, D � 2 [3–6]. We
recall that the Gegenbauer polynomials C(λ)

n (x) are defined as (see, e.g., [7, section 4.7])

C(λ)
n (x) = (2λ)n(

λ + 1
2

)
n

P (λ−1/2,λ−1/2)
n (x)

where P
(α,β)
n (x) are Jacobi polynomials,

P (α,β)
n (x) = (α + 1)n

n!
2F1

(−n, n + α + β + 1
α + 1

∣∣∣∣1 − x

2

)
and for λ > −1/2 they form an orthogonal sequence on the interval [−1, 1] with respect to
the weight function wλ(x) = (1 − x2)λ−1/2,∫ 1

−1
C(λ)

n (x)C(λ)
m (x)(1 − x2)λ−1/2 dx = 21−2λπ	(n + 2λ)

(n + λ)n![	(λ)]2
δn,m.

Instead of using the standard definition of Gegenbauer polynomials, it is often more convenient
to work with the polynomials

Ĉ(λ)
n (x) =

(
λ(n + λ)n!

(2λ)n

)1/2

C(λ)
n (x) (3)

which are orthonormal on [−1, 1] with respect to the probability density

ŵλ(x) = 	(λ + 1)√
π	(λ + 1/2)

(1 − x2)λ−1/2. (4)

The corresponding entropies are thus defined as

E
(
Ĉ(λ)

n

) = −
∫ 1

−1

[
Ĉ(λ)

n (x)
]2

log
[
Ĉ(λ)

n (x)
]2

ŵλ(x) dx. (5)
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The simplest particular cases of Gegenbauer polynomials are the Chebyshev polynomials
of the first and second kind,

Tn(x) = lim
λ→0

n!

(2λ)n
C(λ)

n (x) Un(x) = C(1)
n (x). (6)

For both of these families, information entropies can be easily computed in closed analytical
form, the results being [4, 5]

E(T̂ n) = − 1

π

∫ 1

−1
[T̂ n(x)]2 log[T̂ n(x)]2(1 − x2)−1/2 dx = −1 + log 2 n � 1

E(Ûn) = − 2

π

∫ 1

−1
[Ûn(x)]2 log[Ûn(x)]2(1 − x2)1/2 dx = − n

n + 1
.

(7)

At first sight, there is little hope to find expressions of this kind for the entropies of Gegenbauer
polynomials with λ �= 0, 1. However, in the λ = 2 case, it was proved by Buyarov [8] that

E
(
Ĉ(2)

n

) = − log

(
3(n + 1)

n + 3

)
− n(n2 + 2n − 1)

(n + 1)(n + 2)(n + 3)
− 2√

(n + 1)3(n + 3)3

T ′′′
n+2(ξ)

T ′′
n+2(ξ)

(8)

where

ξ = n + 2√
(n + 1)(n + 3)

(9)

and the previous result was later simplified to [9]

E
(
Ĉ(2)

n

) = − log

(
3(n + 1)

n + 3

)
− n3 − 5n2 − 29n − 27

(n + 1)(n + 2)(n + 3)
− 1

n + 2

(
n + 3

n + 1

)n+2

. (10)

In the same work [9], equation (8) was generalized to arbitrary integer values of the
parameter. Following the notation of [9], for fixed n, l ∈ N, l � 2, we consider the polynomial
sequence {Pk(x)} (degPk(x) = k) generated by the recurrence relation

Pk+1(x) = (2l − 2k − 3)xPk(x) − (n + k + 1)(n + 2l − k − 1)(1 − x2)Pk−1(x) (11)

from the initial values P−1(x) = 0, P0(x) = 1. We also introduce the additional definitions

P(x) ≡ P2l−2(x) = αnl

2l−2∏
j=1

(x − ξj )

H(x) ≡
2l−2∑
k=0

(−1)kPk−1(x)P2l−k−3(x) = βnlx
2l−4 + · · ·

(12)

denote by gnl the leading coefficient of the Gegenbauer polynomial Ĉ(l)
n (x),

Ĉ(l)
n (x) = gnlx

n + · · · gnl = 2n(n + l − 1)!

l!

(
l(n + l)(2l − 1)!

(n + 2l − 1)!n!

)1/2

(13)

and use the shorthand notation

unl ≡
2l−1∑
k=l

1

n + k
= ψ(n + 2l) − ψ(n + l). (14)

Then it can be shown [9] that the entropy of the Gegenbauer polynomial Ĉ(l)
n (x) is given by

E
(
Ĉ(l)

n

) = −snl − rnl

2l−2∑
j=1

(
1 − ξ2

j

) H(ξj )

P ′(ξj )

C
(l+1)
n−1 (ξj )

C
(l)
n (ξj )

(15)
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where the constants snl and rnl are defined as

snl = 2 log
(gnl

2n

)
− n

n + l
+ 2n(n + l)

βnl

αnl

+ 2nunl

rnl = 2(n + l)

√
2n(l + 1)(n + 2l)

2l + 1
.

(16)

The explicit expressions of the polynomials P(x) and H(x) for arbitrary values of n and
l were not given in [9]. The aim of the present paper is to provide a partial solution to this
problem: in section 2, we first show that P(x) is related to the coefficients of the Gaussian
quadrature formula with the Gegenbauer weights wl(x) = (1 − x2)l−1/2, and then we take
advantage of this fact in order to obtain the explicit expression of P(x). From this result, we
easily find the explicit form of the leading coefficients αnl . In section 3, we also obtain the
explicit expression of the polynomial

S(x) = lim
n→∞ P

(
1 − x

2n2

)
(17)

which plays a key role in the study of the asymptotic (n → ∞ with l fixed) behaviour of
E

(
C(l)

n

)
[9]. Finally, in section 4, some concluding remarks are given and several open

problems suggested by the present research are pointed out.

2. Gaussian quadrature with Gegenbauer weights and the polynomial P (x)

For fixed n, l ∈ N (n � 1, l � 2), let us denote by xj (j = 1, . . . , n) the j th zero of the
Gegenbauer polynomial C(l)

n (x). It was proved in [9] that

T
(l−s)
n+l (xj )

Tn+l(xj )
= (n + l)(n + 2l − s − 1)!

(n + s)!
(
1 − x2

j

)(l−s)/2

ps−1(yj )

pl−1(yj )
0 � s � l (18)

[Tn+l(xj )]2 = (−1)l−1 [pl−1(yj )]2

p2l−2(yj )
(19)

where the variable y and the polynomials pk(y) can be defined from x and Pk(x) by means of
the relations

y = x√
1 − x2

pk(y) = Pk(x)

(1 − x2)k/2
. (20)

Recalling the first equation in (12), and using (20) to write (18) and (19) in terms of x and
Pk(x), these two equations read

T
(l−s)

n+l (xj )

Tn+l(xj )
= (n + l)(n + 2l − s − 1)!

(n + s)!

Ps−1(xj )

Pl−1(xj )
0 � s � l (21)

[Tn+l(xj )]
2 = (−1)l−1 [Pl−1(xj )]2

P(xj )
. (22)

Combination of equations (21) and (22) yields the following generalization of the latter,[
T

(l−s)
n+l (xj )

]2 = (−1)l−1

(
(n + l)(n + 2l − s − 1)!

(n + s)!

)2 [Ps−1(xj )]2

P(xj )
0 � s � l (23)

which in the particular case s = 1 can be written as

P(xj ) = (−1)l−1

(
(n + l)(n + 2l − 2)!

(n + 1)!T (l−1)
n+l (xj )

)2

. (24)
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From the differentiation formula for Gegenbauer polynomials [7, p 81]

dC(λ)
n (x)

dx
= 2λC

(λ+1)
n−1 (x)

and the first equation of (6), we see that Gegenbauer polynomials with integer parameter are
essentially derivatives of the Chebyshev polynomials of the first kind,

C(l)
n (x) = T

(l)
n+l(x)

2l−1(n + l)(l − 1)!
.

Equation (24) can thus be written equivalently in terms of Gegenbauer polynomials as

P(xj ) = (−1)l−1

(
(n + 2l − 2)!

2l−2(l − 2)!(n + 1)!C(l−1)

n+1 (xj )

)2

. (25)

The Gaussian quadrature formula establishes that, if {pn(x)} is a polynomial sequence
orthogonal on [a, b] with respect to the weight function w(x), then there exists a uniquely
determined set of real numbers a1, a2, . . . , an (sometimes called Christoffel numbers) such
that the equality∫ b

a

f (x)w(x) dx =
n∑

j=1

ajf (xj )

holds whenever f (x) is a polynomial of degree � 2n − 1 (see, e.g., [7, section 3.4]). The
nodes xj are the zeros of pn(x), which are known to be real and simple, and the coefficients
aj are given by [7, p 48]

aj = −κn+1

κn

1

pn+1(xj )p′
n(xj )

= κn

κn−1

1

pn−1(xj )p′
n(xj )

where κn is the leading coefficient of pn(x), pn(x) = κnx
n + · · · .

In particular, the coefficients aj of the Gaussian quadrature formula for the Gegenbauer
weights wλ(x) = (1 − x2)λ−1/2 are defined uniquely by the requirement that∫ 1

−1
f (x)(1 − x2)λ−1/2 dx =

n∑
j=1

ajf (xj ) (26)

holds if f (x) is a polynomial of degree � 2n − 1. The nodes xj are the zeros of C(λ)
n (x),

while the Christoffel coefficients are given by [7, p 352]

aj = 22−2λπ	(n + 2λ)

n![	(λ)]2

1(
1 − x2

j

)[
C

(λ)
n

′(xj )
]2 . (27)

When λ = l ∈ N, comparison of the previous expression with (25) reveals that there is a
simple relation between P(xj ) and aj ,

P(xj ) = (−1)l−1(n + 2l − 1)!

πn!
(
1 − x2

j

) aj . (28)

It is well known that, in the two Chebyshev cases (λ = 0, 1), the coefficients aj have very
simple analytical expressions. For λ = 0 [7, p 352]

aj = π

n

while for λ = 1 [7, p 353]

aj = π

n + 1

(
1 − x2

j

) = π

n + 1
sin2 jπ

n + 1
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the second expression on the right-hand side being obtained from the first one by taking into
account that the zeros of C(1)

n (x) = Un(x) can be exactly evaluated as xj = cos[jπ/(n + 1)].
At first sight, it seems unlikely that simple formulae of this kind can be found for other values
of λ. However, in a striking parallelism with the problem of information entropies, Förster
and Petras [10] proved that in the λ = 2 case the coefficients aj also have a representation as
elementary functions of the zeros xj , and this result was later generalized to arbitrary integer
values of λ.

The Petras formula [11] for the coefficients aj establishes that, if λ = l ∈ N, then

aj = π

n + l

(
1 − x2

j

)l


1 +

l−1∑
µ=1

1(
1 − x2

j

)µ

(
(2µ)!

2µµ!

)2 (
l − 1 + µ

2µ

) µ∏
k=1

1

(n + l)2 − k2


 . (29)

Using the well-known identities for the Gamma function, binomial coefficients and the
Pochhammer symbol,

(x)n = x(x + 1) · · · (x + n − 1) = 	(x + n)

	(x)
= (−1)n	(1 − x)

	(1 − x − n)(
z

k

)
= (−1)k(−z)k

k!
k! = 	(k + 1) 	(2z) = 22z−1	

(
z + 1

2

)
	(z)

	
(

1
2

)
equation (29) can be written in the more compact form

aj = π

n + l

l−1∑
µ=0

(1 − l)µ(l)µ(1/2)µ

(1 − n − l)µ(1 + n + l)µµ!

(
1 − x2

j

)l−µ
. (30)

Substitution of this equation into (28) gives

P(xj ) = (−1)l−1(n + 2l − 1)!

(n + l)n!

l−1∑
µ=0

(1 − l)µ(l)µ(1/2)µ

(1 − n − l)µ(1 + n + l)µµ!

(
1 − x2

j

)l−1−µ
. (31)

Since both sides of (31) are polynomials of the same degree, we conclude that the explicit
expression of the polynomial P(x) is

P(x) = (−1)l−1(n + 2l − 1)!

(n + l)n!

l−1∑
µ=0

(1 − l)µ(l)µ(1/2)µ

(1 − n − l)µ(1 + n + l)µµ!
(1 − x2)l−1−µ. (32)

From the µ = 0 term of the sum in (32), we easily find the explicit expression of the
leading coefficient αnl ,

αnl = (n + 2l − 1)!

(n + l)n!
(33)

which is required to compute the constants snl defined in (16). The order of the terms in (32)
can be reversed by writing

(a)m−r = (−1)r(a)m

(1 − a − m)r

which leads to the alternative expression

P(x) = (−1)l−1(l)l−1(1/2)l−1

l−1∑
k=0

(1 − l)k(1 − n − 2l)k(n + 1)k

(2 − 2l)k(3/2 − l)kk!
(1 − x2)k. (34)

Finally, we point out that the sums in (32) and (34) can both be written as partial sums
of 3F2 hypergeometric series. However, they cannot be written as complete hypergeometric
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series, since replacing the upper limit l − 1 by infinity would give rise to additional finite
terms for µ � n + l and 2l − 1 � k � n + 2l − 1, respectively. Using Slater’s notation for the
truncated hypergeometric series [12, p 83]

pFq

(
α1, α2, . . . , αp

β1, β2, . . . , βq

∣∣∣∣z
)

m

=
m∑

k=0

(α1)k(α2)k · · · (αp)kz
k

(β1)k(β2)k · · · (βq)kk!

equations (32) and (34) read

P(x) = (−1)l−1(n + 2l − 1)!

(n + l)n!
(1 − x2)l−1

3F2

(
1 − l, l, 1/2

1 − n − l, 1 + n + l

∣∣∣∣ 1

1 − x2

)
l−1

= (−1)l−1(l)l−1(1/2)l−1 3F2

(
1 − l, 1 − n − 2l, n + 1

2 − 2l, 3/2 − l

∣∣∣∣1 − x2

)
l−1

. (35)

3. Asymptotics of the entropy and the polynomial S(x)

Following again the notation of [9], for fixed l ∈ N, l � 2, we consider the polynomial
sequence {Sk(x)} (degSk(x) = integer part of k/2) generated by the recurrence relation

Sk+1(x) = (2l − 2k − 3)Sk(x) − xSk−1(x) (36)

from the initial values S−1(x) = 0, S0(x) = 1. From the analogy of (12), we also define the
polynomials

S(x) ≡ S2l−2(x) R(x) ≡
2l−2∑
k=0

(−1)kSk−1(x)S2l−k−3(x). (37)

It was shown in [9] that, as n → ∞,

E
(
Ĉ(l)

n

) = 1 + log

(
(2l − 1)!

(l − 1)!l!

)
+

γl

n
+ O(n−2) (38)

where

γl = −2l2 + l − 2
l−1∑
j=1

√
ζj

R(ζj )

S′(ζj )

Jl+1/2(
√

ζj )

Jl−1/2(
√

ζj )
(39)

ζj being the zeros of S(x) and Jν(x) the Bessel function of order ν. Equation (38) substantially
improves on previous asymptotic results for E

(
Ĉ(λ)

n

)
with arbitrary λ ∈ R, which only provided

the leading term of the expansion [4, 13]. In turn, a refinement of (38) that also gives the
explicit form of the next (O(n−2)) term in the expansion as a function of the polynomials S(x)

and R(x) has been found very recently [14].
The explicit expressions of S(x) and R(x) for arbitrary values of l were not given in

[9]. However, it was shown therein that the polynomial Sj (x) can be obtained from Pj (x) by
means of the limit relation

Sj (x) = lim
n→∞ Pj

(
1 − x

2n2

)
(40)

locally uniform on C, which includes (17) as the particular case j = 2l − 2. This equation
can be used to find from (32) the explicit expression of S(x). To achieve this goal, we first
note that

x = 1 − z

2n2

⇒ (1 − x2)l−1−µ =

( z

n2

)l−1−µ (
1 − z

4n2

)l−1−µ

.
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On the other hand, from (32) we readily see that the coefficient of (1 − x2)l−1−µ in P(x) is a
polynomial of degree 2(l − 1 − µ) in n, since

(n + 2l − 1)!

(n + l)n!

1

(1 − n − l)µ(1 + n + l)µ
= (−1)µn2(l−1−µ) + · · · .

A straightforward calculation using (17) and (32) then leads to the following expression:

S(x) =
l−1∑
µ=0

(1 − l)µ(l)µ(1/2)µ

µ!
(−x)l−1−µ (41)

which is essentially a terminating 3F0 hypergeometric series,

S(x) = (−x)l−1
3F0

(
1 − l, l, 1/2

−
∣∣∣∣ − 1

x

)
. (42)

Finally, reversing the series in (41) we obtain the alternative expression

S(x) = (−1)l−1(l)l−1(1/2)l−1

l−1∑
k=0

(1 − l)k

(2 − 2l)k(3/2 − l)kk!
(−x)k. (43)

This sum is not a complete hypergeometric series, since replacing the upper limit l − 1 by
infinity would give rise to additional finite terms for k � 2l − 1. It can be written as a partial
sum of a 1F2 hypergeometric series,

S(x) = (−1)l−1(l)l−1(1/2)l−11F2

(
1 − l

2 − 2l, 3/2 − l

∣∣∣∣ − x

)
l−1

. (44)

4. Concluding remarks and open problems

The main result obtained in this paper is equation (28), which relates the polynomial
P(x) = P2l−2(x) generated by (11) to the Christoffel coefficients of the Gaussian quadrature
formula for the Gegenbauer weight (1−x2)l−1/2. Taking advantage of the Petras formula (29),
we then were able to find the explicit expression of P(x). In turn, use of this result together
with the limit relation (17) allowed us to obtain the explicit expression of the polynomial
S(x) = S2l−2(x) generated by (36).

The fact that such expressions do exist strongly suggests that the same should happen for
every polynomial in the sequences {Pk(x)} and {Sk(x)} generated by the three-term recurrence
relations (11) and (36), respectively. However, up to now we have not been able to find the
general expressions of Pk(x) and Sk(x) for 1 � k � 2l−2. As a consequence, we do not know
the explicit expression of the polynomial H(x) (resp. R(x)) defined by the second equation in
(12) (resp. (37)), which is required to compute the exact (resp. asymptotic) value of E

(
C(l)

n

)
by means of equations (15) and (16) (resp. (38) and (39)).

For Gegenbauer polynomials with non-integer parameter, equation (29) provides an
asymptotic approximation of arbitrary precision for the Christoffel coefficients aj . More
precisely, if λ /∈ N, λ > −1/2, and m is an arbitrary integer, then [11]

aj = π

n + λ

(
1 − x2

j

)λ


1 +

m−1∑
µ=1

1(
1 − x2

j

)µ

(
(2µ)!

2µµ!

)2 (
λ − 1 + µ

2µ

) µ∏
k=1

1

(n + λ)2 − k2

+ O
(
n−2m

(
1 − x2

j

)−m) .
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One may wonder whether this result can be useful to study the asymptotics of the information
entropies E

(
C(λ)

n

)
for arbitrary λ ∈ R. Finally, another open problem is that of extending

the relationship between information entropies and Gaussian quadrature formulae to other
families of orthogonal polynomials.
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